Python for Data Analysis – Data Wrangling with pandas, NumPy, and Jupyter, Third Edition by Wes McKinney
Open access online version: https://wesmckinney.com/book/
Data files and materials: https://github.com/wesm/pydata-book
Chapter 1
Essential libraries/tools:
- NumPy
- pandas
- matplotlib
- IPython
- Jupyter Notebook
- SciPy
- scikit-learn
- statsmodels
- Anaconda/Miniconda
?
– object introspection
def add_numbers(a, b): """ Add two numbers together Returns ------- the_sum : type of arguments """ return a + b add_numbers? output: Signature: add_numbers(a, b) Docstring: Add two numbers together Returns ------- the_sum : type of arguments File: <path> Type: function